Inferring and Enforcing Relative Constraints in SLAM

نویسندگان

  • Kristopher R. Beevers
  • Wesley H. Huang
چکیده

Most algorithms for simultaneous localization and mapping (slam) do not incorporate prior knowledge of structural or geometrical characteristics of the environment. In some cases, such information is readily available and making some assumptions is reasonable. For example, it is often safe to assume that many walls in an indoor environment are rectilinear. In this paper, we develop a slam algorithm that incorporates prior knowledge of relative constraints between landmarks. We describe a “Rao-Blackwellized constraint filter” that infers applicable constraints and efficiently enforces them in a particle filtering framework. We have implemented our approach with rectilinearity constraints. Results from simulated and real-world experiments show the use of constraints leads to consistency improvements and a reduction in the number of particles needed to build maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

Amortized Constant Time State Estimation in SLAM using a Mixed Kalman-Information Filter

The computational bottleneck in all informationbased algorithms for SLAM is the recovery of the state mean and covariance. The mean is needed to evaluate model Jacobians and the covariance is needed to generate data association hypotheses. Recovering the state mean and covariance requires the inversion of a matrix of the size of the state. Current state recovery methods use sparse linear algebr...

متن کامل

Simplification of a Petri Net controller in industrial systems

This paper deals with the problem of forbidden states in discrete event systems modeled by Petri Net. To avoid the forbidden states, some constraints which are called Generalized Mutual Exclusion Constraints can be assigned to them. Enforcing these constraints on the system can be performed using control places. However, when the number of these constraints is large, a large number of control p...

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

Amortized constant time state estimation in Pose SLAM and hierarchical SLAM using a mixed Kalman-information filter

The computational bottleneck in all information-based algorithms for simultaneous localization and mapping (SLAM) is the recovery of the state mean and covariance. The mean is needed to evaluate model Jacobians and the covariance is needed to generate data association hypotheses. In general, recovering the state mean and covariance requires the inversion of a matrix with the size of the state, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006